
PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

21

Software Analysis with Package Level

Modularization Metrics

1MOHSIN KHAN SHAIKH*, 1MUHAMMAD ADIL ANSARI,

2AKHTAR HUSSAIN JALBANI

1Quaid-e-Awam University College of Engineering, Science & Technology, Larkana
2Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah

*Corresponding Author’s email: engr_mohsin@quest.edu.pk

Abstract

Increasing complexity of software systems require extensive maintenance through

decomposition of source code into appropriate abstractions to achieve effective modularization.

An optimal modularization of object-oriented software insuring low coupling and high cohesion

is perceived as a challenging task. In this paper, we present empirical perspective of new inter-

module coupling based modularization metrics to assess their utility. In particular, we explore

impact of correlation between these design-based modularization metrics and external quality

attributes of software systems. Our experimental study covers 34 open source java software

systems and shows that inter-module coupling based modularization correlates with existing

metrics of modularization and also bear substantial relationship with vital quality attributes of

software design.

Keywords: Software metrics, Software analysis, Modularity

INTRODUCTION

oftware evolution process is carried out through continuous addition, modification and

re-organization of source code. As these activities are reflected into source code, there is

an eventual drift in software design. Recently, there has been significant advancement to

reverse engineer the software systems for automatic extraction of its design depicting an

aggregate view. Some of notable techniques in this regard are related to partitioning of software

systems into sub-systems (clusters) [1]. With an advancement in building tools and

methodologies for software maintenance, there has been significant research over mechanism

of partitioning the software into sub systems considering source code abstractions like classes

and packages [2]. In particular, package organization provides higher abstraction and easier

way for comprehension, complexity reduction and understanding maintainability. We also

build linear correlation model with existing validated modularity metrics studied in different

domains of engineering [3]. We evaluated this approach with comprehensive empirical analysis

over open source java systems. Consequently, these findings help to evaluate the cohesive

quality of software. Additionally, significant statistical relationship was also witnessed with

S

mailto:engr_mohsin@quest.edu.pk

PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

22

maintainability, design deficit and testability. Thus, this effort can help taking measures to

minimize the design flaws of software systems. However, due to frequent changes into

software, increase in fragility of software modularization is not an impossible occurrence.

Sarkar et al. have proposed a new modularization metrics suite based on packages as

its functional component [4]. In this context they have devised two categories of coupling

based metrics, i.e., based on inheritance or association and method invocation. As a matter of

fundamental perspective of modularization, inheritance and association produce abstraction

and encapsulation in software design.

In this paper, we explore inheritance and association-based coupling metrics for

automated optimization of module structure and determine their impact over testing efforts,

deficit produced in design of software and its overall emphasis.

METRICS STUDIED

This section provides the description and summary of investigated metrics and software

quality attributes. Table 1, 2, 3 summarizes the definition of inter-module coupling

modularization metrics produced with specific methodology of programming design, i.e.,

inheritance, association and polymorphism. With object-oriented design paradigm, inheritance

and association are the most important dependence relationship showing interactive coding

structure among packages and classes. In programming sense, inheritance relationship is

created when a class extends another class, while association is formed when class uses another

class. In addition to this, such dependencies among the classes are often seen to be distributed

in different modules (Packages in our context of study). Another coupling relationship known

as fragile base-class problem follows a design phenomenon when two classes existing different

module show interdependencies causing fragility into base class. Sarkar et al. describe these

metrics to measure the modularization quality of modules showing the strength of package

organization in software structure. Furthermore, illustration of each metric is given as under:

• IC(S): is a composite metric that measures the extent to which

inheritance-based dependencies among and within the

packages are minimized.

• AC(S): is composite metric that measures the extent to which

association-based dependencies among and within the

packages are minimized.

• BCFI(S): is a composite metric that measure the extent to

which polymorphic design of methods is restricted to the

defining packages.

-
-

PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

23

Table 1: Coupling Metrics

Metric Definition

 Inheritance based Inter-

Module Coupling

 𝐼𝐶(𝑆) =
1

|𝑝|
 ∑ 𝐼𝐶 (𝑃)

Association Induced

Intermodule - Coupling
 𝐴𝐶(𝑆) =

1

|𝑝|
 ∑ 𝐴𝐶 (𝑃)

Base-class Fragility 𝐵𝐶𝐹𝐼(𝑆) =
1

|𝑝|
 ∑ 𝐵𝐶𝐹𝐼 (𝑃)

Table 2: Modularity Metrics

Metric Definition

Mnewman Modularity and community structure in network [5]

MQ Modularity of software based on clustering [6]

Mg&g Modularity of mechanical products. [7]

Mrcc Modularity based on dependency cost [8]

Description of quality metrics is as under:

• MI: Maintainability index is composite metric that incorporates number of

traditional source code metrics into single value that indicates relative

maintainability.
• QDI: Quality Deficit Index is a positive value aggregating the detected design

flaws (i.e., code smells and architectural smells).

• TLOC: Testability metric in our study is considered as effort required to test

the software system.

Table 3: Quality Metrics

Metric Definition

Halstead

Maintainability

Index (MI) [9]

𝑀𝐼 = 171 − 5.2 × log(𝑎𝑣𝑒𝑉)
− 0.23 × 𝑎𝑣𝑒𝑉(𝑔′)
− 16.2 × log(𝑎𝑣𝑒𝐿𝑂𝐶)

Quality Deficit Index

(QDI) [10]

𝑄𝐷𝐼 =
∑ 𝐹𝐼𝑆𝑓𝑙𝑎𝑤−𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑎𝑙𝑙−𝑓𝑙𝑎𝑤−𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐾𝐿𝑂𝐶

Testability Metric

(TLOC) [11]

𝑇𝐿𝑂𝐶 = ∑ 𝐿𝑂𝐶(𝐶𝑖)

𝑛

𝑖=1

PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

24

EXPERIMENTAL STUDY

In this section, we describe our comprehensive experimental evaluation of Sarkar’s et

al. modularization metrics over open source software system. The key process is selection of

intelligent metrics to evaluate software modularity. Therefore, most efficient and already

utilized methodology in our research. Our objective is to analyze the effects of coupling

modularization metrics over different quality attributes of software systems. i.e.,

modularization metrics, external quality attributes. Following study features are listed as

objectives of experimental work.

1. Assess strength of relationship between Sarkar’s coupling modularization metrics and

Baseline modularization studied in different domains.

2. Determine impact of Sarkar’s coupling modularization metrics over maintenance,

design flaws and testing effort.

Develop the theoretical perspective for Sarkar’s coupling modularization metrics in

improving overall software quality. We selected 34 versions of three different open source

system in our experiment. JHotDraw [12]: a Java GUI framework for technical and structured

Graphics. Ant [13]: a Java library and command-line tool whose mission is to drive processes

described in build files. Google-Web Toolkit [14]: an open source set of tools that allows web

developers to create and maintain complex JavaScript front-end applications in Java.

These systems have reasonable size, manageable degree of complexity, diverse

application domain and easily accessible source code for data processing and computation of

described metrics in order to carry out further study. To calculate metrics, coupling

modularization metrics, TLOC and MI, source code of subject system was parsed and analyzed

through commercial tool Understand: A commercial static analysis tool. To figure out QDI, we

used evaluation version of open source tool Infusion. After collecting metrics data, statistical

test of correlation is used to obtain the objectives defined. The subject of software sustainability

is emerging as bench-mark to realize applications of software in social, economic, operational

and technical terms. Hence, relevant empirical studies are required to explore the subject

further. We presented an experimental analysis over 34 versions of three different open source

java systems that includes research objectives, design, data processing and experimental

results.

EXPERIMENTAL RESULTS

In Table 4 and 5, magnitude of association of coupling based metrics is shown at

different strength of significant levels with bold values into table cells. Modularity metrics

correlations are shown in Table 4.

PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

25

Table 4: Correlation with Quality Metrics

Table 5: Correlation with Modularization Metrics

Project Metric Mnewm Mbunch Mg&g Mrcc

 BCF(S) 0.94 0.77 0.59 0.97

JHotDraw [9] IC(S) 0.94 0.66 0.24 0.84

 AC(S) 0.53 0.72 0.78 0.70

 BCF(S) 0.41 0.20 0.24 0.60

Apache-ant [14] IC(S) 0.27 0.76 -0.79 -0.93

 AC(S) 0.13 -0.54 0:54 0:31

 BCF(S) 0.26 0.32 0.12 -0.45

Google-Web Toolkit

[11]
IC(S) 0.83 0.80 0.45 -0.90

 AC(S) -0.94 -0.90 0:41 0.98

Some important observations dealing with modularity correlation of Table 4 are

described. For JHotDraw, BCF(S) is seen strongly correlated with Mnewm and Mrcc. AC(S) is

observed to be in significant relationship with modularity metrics of Mbunch, Mg&g and Mrcc. For

Apache-Ant, strong association of correlation is established only for IC(S) with Mbunch, Mg&g

and Mrcc. Interestingly, Mnewm has shown weak statistical significance with most of coupling

metrics in all cases. While in case of Google-Web ToolKit, AC(S) and IC(S) have produced

Project Metric MI QDI TLOC

 BCF(S) -0.86 0.92 0.74

JHotDraw [9] IC(S) -1.000 0.99 0.78

 AC(S) -0.18 0.32 0:14

 BCF(S) -0.072 0.75 0.60

Apache-ant [14] IC(S) -0.52 -0.37 -0.93

 AC(S) -0.51 0:52 0:39

 BCF(S) -0.19 0:49 0:085

Google-Web Toolkit [11] IC(S) 0.45 0.024 -0.80

 AC(S) -0.58 0:01 -0.87

1

0.9

0.7

	

.E 0 6 	
O

	

0.5 	

	

0.4 	

	

10 0.3 	

	

2 0.2 	

	

0.1 	

	

0 	

1
0.9

VI 0.8

7
,3 0.7

0
c 0.5

4g 0.5

0.4

-2 0.3

2 0.2

0.1

0

—

	 1111--4--ek--0-0-0-410-111-10

v.1.5.2 v1.5.4 	 v.1.6.2 v.1.6.3 v.1.6.4 v.1.5.5 v-1.7.0 v.1.7.1 v.1.8.0 v.1.8.1 	v-1.8.3

Versions

*BCF *IC *AC

v-52 	v-53
	

v-5.4 	v-6.0
	

v-7.1
	

v-7.2 	v-7.3 	v-7.4 	v-7.5

Versions

*BCF *IC MAC

PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

26

confident statistical relationship with modularity metrics. Such kind of variations in modularity

correlation can be result of particular design paradigm of software systems where use

dependencies are minimum in JHotDraw and extend dependencies are maximum in Apache-

Ant.

Figure 1: Apache Evolution Scenario

We can identify interesting observation of correlations from Table 5. First, BCF(S) is

in strong and positive significant correlation with QDI and TLOC employing that fragility of

base-class in software may result in the design deterioration and testing overhead. Second, in

all cases, inheritance and association-based coupling metrics are inheritance and association-

based coupling metrics are negatively correlated with MI.

Figure 2: JhotDraw Evolution Scenario

In software engineering, process of evolution driven by incremental development and

design changes. In this section, we present pattern of coupling metrics with consecutive

1

0.9

N 0.8

A 0.7

0
0.6

as

al

v-1.3 	v-1.4 	v-1.5 	v-1.6 	v-1.7 	v-2.0 	v-2.1 	v-2.2 	v-2.3 	v-2.4 	v-2.5

Versions

B C F OIC -111-AC

PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

27

 versions of software systems through graphical representation as shown in Figure 1, 2 and 3.

In 14 versions of Apache-ant, all the coupling-based metrics are seen in consistent pattern. In

9 versions of JHot-Draw, AC(S) and IC(S) is observed to be improving. BCF(S) has improved

in gradual manner to significant extent. In 11 versions of Google-Web Toolkit, BCF(S) and

IC(S) has shown slight decline as the software evolves, while AC(S) has exhibited an

improving trend.

Figure 3: Google Webtool Kit Evolution Scenario

 In this regard, we reported statistical relationship of Sarkar's et al. modularization

metrics with existing validated modularity metrics studied in different domains of engineering

and quality metrics. Indeed, from theoretical standpoint, our study has diverse quality assurance

focus but with major emphasis on architectural sustainability. We do not rule out other

parameters that may have arguably better explanatory power, however, our effort is to explore

significance of package-based modularization metrics.

CONCLUSION

The modularity is an important aspect of software system describing its overall quality

and strength. In this paper, we investigated package based proposed modularization metrics

from multi-dimensional views using correlation methodology. Our empirical study is a

statistical proof for utility and application of coupling modularity metrics through statistical

correlation methodology. Our results show that coupling based modularization metrics have

significant relationship with modularization metrics proposed in different engineering

domains. Such findings can help the software engineer to develop design plan to ensure

optimized source code architecture. Results over open source software system show that

managing the coupling between the packages can also reduce maintenance work, deficit in

design quality and testing effort.

PJCIS (2017), Vol. 2, No. 2 : 21-28 Software Analysis with Package Level

28

REFERENCES

[1] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of software

systems using the Bunch tool,” IEEE Trans. Softw. Eng., vol. 32, no. 3, pp. 193–208,

Mar. 2006.

[2] H. Abdeen, S. Ducasse, and H. Sahraoui, “Modularization metrics: assessing package

organization in legacy large object-oriented software,” in 18th Working Conf. Reverse

Engineering, 2011, pp. 394–398.

[3] S. Sarkar, A. C. Kak, and G. M. Rama, “Metrics for measuring the quality of

modularization of large-scale object-oriented software,” IEEE Trans. Softw. Eng., vol.

34, no. 5, pp. 700–720, Sep. 2008.

[4] K. S. Lee and C. G. Lee, “Comparative analysis of modularity metrics for evaluating

evolutionary software,” IEICE Trans. Inf. Syst., vol. 98, no. 2, pp. 439–443, 2015.

[5] M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl.

Acad. Sci., vol. 103, no. 23, pp. 8577–8582, 2006.

[6] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch: a clustering tool

for the recovery and maintenance of software system structures,” in Proc. IEEE Int.

Conf. Software Maintenance - 1999 (ICSM’99). “Software Maintenance for Business

Change” (Cat. No.99CB36360), 1999, pp. 50–59.

[7] F. Guo and J. K. Gershenson, “A comparison of modular product design methods

based on improvement and iteration,” in Volume 3a: 16th Int. Conf. Design Theory and

Methodology, 2004, pp. 261–269.

[8] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure of complex

software designs: An empirical study of open source and proprietary code,” Manage.

Sci., vol. 52, no. 7, pp. 1015–1030, 2006.

[9] K. D. Welker, “The software maintainability index revisited,” CrossTalk, vol. 14, pp.

18–21, 2001.

[10] R. Marinescu, “Assessing technical debt by identifying design flaws in software

systems,” IBM J. Res. Dev., vol. 56, no. 5, Sep. 2012.

[11] A. Tahir, S. G. MacDonell, and J. Buchan, “Understanding class-level testability

through dynamic analysis,” in 9th Int. Conf. Evaluation of Novel Approaches to

Software Engineering (ENASE), 2014, pp. 1–10.

[12] Anonymous, “JHotDraw.” [Online]. Available: http://www.jhotdraw.org.

[13] Anonymous, “Graphics. Ant.” [Online]. Available: http://ant.apache.org.

[14] Anonymous, “GoogleWebKit.” [Online]. Available: http://www.gwtproject.org.

