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Abstract 
 

A recently developed meshless method, namely the radial basis function (RBF) 

combined with method of lines (MOL), i.e RBFMOL  is used to find numerical 

solution of initial boundary value problems. Numerical examples are given to illustrate the 

practical usefulness of this approach. 
2, LL

 norms and RMS are used for error 

estimation. Superiority of the proposed method is shown as compared with two existing 

numerical methods such as variational iteration method and finite difference method. 

 

Keywords: Method of lines (MOL), Korteweg-de-Vries (KdV)equation, Radial 

basis function (RBF), Multiquadric (MQ), Inverse Multiquardic (IMQ), Guassian (GA), 

Fourthorder Runge Kutta (RK4), Finite difference method(FDM) 

 

 

INTRODUCTION 
 

In 1895, a partial differential equation was introduced by Korteweg and de Vries to 

model the height of surface of shallow water in the presence of long gravity waves which is 

called Korteweg-de-Vries (KdV) equation [1]. After 1960 Zabusky and Kruskal [2] 

numerically discovered the elastic collision between the KdV solitary waves and then 

Gardner et al.[3, 4]find the inverse scattering transform method and also solved the KdV 

equation analytically. That was a pioneering work which initiated many research activities 

on nonlinear waves. Since non linear phenomena plays crucial role in a variety of scientific 

fields, especially in fluid mechanics, solid state physics, thermodynamic etc [5]. 
 

Various researchers applied different numerical methods such as bilinear method of 

Hirota [6], the  homogenous  balance  method [7],  Sine-cosine method [8], Backlund 
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Transformation [9, 10], the Tanh method [11], the variational iteration method (VIM) [12, 

13]Darboux transformation [14] etc to find the solution of nonlinear PDEs with 

appropriate initial or initial and boundary conditions. 
 

We consider a nonlinear partial differential equation of the form;  
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where   and   are constants and 0,1,2.=m  

For 0=m  the Eq . (1) becomes linear KdV equation. 

For 1=m  the Eq . (1) becomes nonlinear KdV equation [15].  

For 2=m  the Eq . (1) becomes nonlinear Modified KdV equation [16]. 

 

 KdV equation has some physical applications such as shallow water gravity 

waves, internal waves in the atmosphere and ocean etc. In fact it shows a combined effects 

of nonlinearity )(
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 and the simplest longwave dispersion )(
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Since there is a class of nonlinear wave equations (soliton equations) which have 

the property of complete integrability such as Sine Gordon equation, the modified 

Korteweg-de-Vries equation and the cubic nonlinear Schrodinger equation [17]. 

 

We will study modify KdV equation.  
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we can also write this equation as  

0,=2

xxxxt uuuu                            (3) 

 

mKdV equation describes the motion of waves in nonlinear optics, plasma or fluids [18]. It 

occurs in many nonlinear fields like acoustic waves in certain anharmonic lattices, schottky 

barriers of transmission lines, traffic congestion models, ion-acoustic solitons, Alfven 

waves in a collisionless plasma etc [7, 19]. It advocates several characteristic such as 

Conservation laws, N-solitons, Muira transformation, Inverse scattering transformation, 

Darboux transformation and Bilinear transformation [7].The modified KdV (mKdV) 

equation was solved by various numerical techniques both analytically and numerically 

such as Homotopy perturbation method (HPM) [19], Reduced differential transform 

method [5], Exp-function method [3], Backlund transformation [20], Adomian 

decomposition method (ADM) [15, 21]. The Extended Cosine-function is used to obtain 

the solution of traveling  wave of the mKdV equation [22] , Homotopy  analysis method  
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[18], Yuanxi [23] found series of explicit and exact solutions by Trial function method, 

Gesztesy et al.[24] applied Commutation method, Turabi and Dogan[16] used ADM and a 

‘lumped’ Galerkin method with quadratic B-spline Finite Element method and obtained 

the numerical solution, Ibrahim and Kalaawy [22] used Extended Cosine-function to find 

the traveling wave solution of mKdV equation.  
 

Meshless method is used in this study due to its remarkable properties of computing 

high dimension data, bringing changes in the domain of interest (like free surfaces and 

large deformations in the field of geometry) and consuming lesser time due to its 

independence from mesh. There are different meshless methods like Diffuse element 

method (DEM), Reproducing kernal particle method (RKPM), Moving Least square 

method, Radial basis function (RBF) [25]. 
 

The radial basis function (RBF) combined with method of lines (MOL), or 

RBFMOL  is used to find numerical solution of initial boundary value problems i.e 

mKdV equations. 
 

This paper is organized as follows. 
 

In the introduction authors introduce the KdV and mKdV equations. Authors 

discuss RBF in detail that how they use the RBFs interpolation to approximate the solution 

in the section named Radial Basis Function. Method of lines for mKdV equation using 

RBFs is applied in next section. The section named Implementation and Results shows the 

results of numerical examples and comparison through tables and figures. After this 

convergence analysis is given and the last section includes conclusion.  
 

Radial Basis Function 
 

When a function to be approximated there are three cases to be considered 
 

1. It depends on many variables or parameters, 

2. It is defined by possibly many data, 

3. The data are scattered in their domain. 
 

The RBF approach is suitable for these cases [26]. 
 

It is one of the most advanced meshless method. It was first introduced in 1990 by 

Kansa[27] for the solution of PDEs. RBF has an edge over the other numerical methods 

like Finite volume method (FVM), Finite difference method (FDM) and Finite element 

method (FEM) because of its easy implementation, fast convergence [2], independent of 

mesh and accurate results. 
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Due to its properties, RBFs have been applied successfully to obtain numerical 

solution of many types of PDEs and ODEs including heat transfer equation, shallow water 

equation for tide and currents simulation, the nonlinear Burger equation upto two 

dimension [25]. Because of its meshless property it is useful for 3D problems as well as 

those problems that require re-meshing such as in nonlinear analysis [28]. It has many 

applications in science and mathematics such as mapping of two or three dimensional 

images like portraits or underwater sonar scan into other images for comparison [26]. 
 

RBF can be globally supporting, infinitely differentiable and consist of a shape 

parameter which needs to be selected from selected or random region for obtaining 

required accuracy [29]. 
 

Commonly available RBFs are 
 

(1) Multiquadric (MQ ):
22=)( crr jj   , 

(2) Inverse Multiquadric (IMQ ):
22
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(3) Gaussian (GA): 
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(4) Quadric (Q): )(=)( 22 crr jj   , 

(5) Inverse quadric (IQ):
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where c is the shape parameter.  

 

Interpolation of RBF 
 

 Using )(xu N  as the approximate function, RBF method gives [30] 

 

,)(=)(=)(
1=

cxrcxu T

kk

N

k

N                               (4) 

where N  is the number of data point,   is any form of RBF , kk xxr   which 

represents the Euclidean norm between collocation points x  and kx  in the interval ],[ ba  
 

T
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from Eq. (4) and Eq. (5), we get  

,)(=)(=)( 1 uxMuAxxu TN                                  (6) 

where )](),(),...,(),([=)(=)( 121
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Method of Lines for mKdV Equation Using RBFs 
 

 In this section we solve mKdV equation (3) in a finite domain  

0,=2

xxxxt uuuu                                          (7) 
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the initial condition is  
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and boundary conditions are  
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here   and   are real constant and )(0 xu , )(tf , )(tg  are known functions. 

 

Now we discretize the spatial derivatives according to the first step of MOL by using RBF 

interpolation . So that we choose N  nodes in ],[ ba  

such as bxxxxa NN =<<<<= 121   

by RBF interpolation the following results are obtained  
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when we apply Eq. (10) to Eq. (7) , and collocate on the node kx  , we obtain  

NkuxMxMu
dt

du
kxxxkxk

k 1,2=0,=)()((2    (11) 

as )(tuk  is abbreviated to ku  

as we have  
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We write this system in term of the column vectors. 
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T
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So that above equation (11) can be written as  
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Where * is the multiplication of two vectors component-by-component. 

We can also write the above equation as  
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and the boundary conditions are  

)(=)(),(=)(1 tgtutftu N                      (15) 

After completion of first step of RBFMOL  method we apply an ODE solver to solve 

equations . (13)-(15). 

In this study fourth order Runge Kutta (RK4) is used as an ODE solver which is given by  
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Implementation and Results 
 

Example 1: Consider the mKdV equation along with the initial condition [15] 
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where “a” is a real constant , by taking 6=  and 1= .  

The exact solution is  
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The boundary conditions are extracted from the exact solution.  

 

The computational domain is [0.1,0.5]  , 0.50.1= t  , 0.0001=t , 0.1=5,= hN . 

We used the following error norms.  
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where Nu  is approximate solution and u represents the exact solution.  

 

In Table 1 RBFs shows higher accuracy than FDM as a result of use of 2, LL  norms and 

Root mean square (RMS) for error estimation, which shows the accuracy of 510  and 
610  by different values of shape parameter of RBFs while FDM shows 110  accuracy . 

The achievements of 5th and 6th order accuracy has been shown in Table 1. The Figures 1-2 

show better graphical and 3D representation of approximate solution of RBFs with the 

exact solution of IBVP. 
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Figure 1: Approximate solution of RBFs 

of example 1 

 

 
 

Figure 2: 3D graph of approximate solution 

of RBFs of example 1 

 
 

 

Table 1: Computational domain is [0.1, 0.5] × [0.1, 0.5] 
 

 

 t  MQ 

 Max-error 
2L error 

RMS 

0.1 2.2311E-5  1.0303E-5 1.2315E-5 

0.2 4.8340E-5 2.2140E-5 2.6463E-5 

0.3 7.5163E-5 3.4350E-5 4.1056E-5 
0.4 1.0279E-4 4.6904E-5 5.6061E-5 

0.5 1.3122E-4 5.9806E-5 7.1482E-5 

IMQ 

0.1 3.4265E-5 1.7730E-5 2.1192E-5 
0.2 6.2099E-5 3.1012E-5 3.7066E-5 

0.3 8.9720E-5 4.4179E-5 5.2804E-5 

0.4 1.1711E-4 5.7212E-5 6.8382E-5 
0.5 1.4425E-4 7.0102E-5 8.3788E-5 

GA 

0.1 2.4163E-6 1.1231E-6 1.3424E-6 

0.2 4.8627E-6 2.2281E-6 2.6631E-6 
0.3 7.3371E-6 3.3148E-6 3.9619E-6 

0.4 9.8375E-6 4.3831E-6 5.2389E-6 

0.5 1.2361E-5 5.4332E-6 6.4940E-6 

FDM 

0.1 1.0124E-1 5.1572E-2 6.1641E-2 

0.2 2.2261E-1 1.0025E-1 1.1983E-1 

0.3 3.6342E-1 1.5022E-1 1.7955E-1 
0.4 5.0851E-1 2.0883E-1 2.4960E-1 

0.5 6.3184E-1 2.7034E-1 3.2312E-1 
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Example 2: From the following mKdV equation the traveling wave solution was obtained 

[15].  

 

),(sec=,0)(0,=6 2 xbkhbxuuuuu xxxxt   (17) 

 

 for all 0b  , and k  is an arbitrary constant. 0.001=0.1,=5,= thN  . 

 

 

We have used RBFs such as MQ, IMQ, GA and the results are compared with 

FDM. 

 

 

In Table 2 comparison shows that RBFMOL  has better results and higher order 

accuracy as compared to FDM. In the case of RBF, GA shows high accuracy than MQ and 

IMQ. The graphical results of approximate solution of RBFs and exact solution of IBVP 

are shown in Figure 3-4. 

 

 

 
Figure 3: Approximate solution of RBFs 

of example 2 
 

 

 
Figure 4: 3D graph of approximate solution 

of RBFs of example 2 
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Table 2: Numerical result for the traveling wave solution with c = 1.0 , k = 7 
 

 t  MQ 

 Max-error 
2L error 

RMS 

0.1 5.4013E-6  2.8995E-6 3.4655E-6 

0.2 8.6746E-6 4.5079E-6 5.3879E-6 
0.3 1.2434E-5 6.3992E-6 7.6485E-6 

0.4 1.6751E-5 8.5572E-6 1.0227E-5 

0.5 2.1484E-5 1.0969E-5 1.3110E-5 

IMQ 

0.1 3.2521E-6 1.5303E-6 1.8291E-6 

0.2 1.0060E-5 5.2381E-6 6.2608E-6 

0.3 1.7582E-5 9.4075E-6 1.1244E-5 
0.4 2.5892E-5 1.4023E-5 1.6761E-5 

0.5 3.5074E-5 1.9126E-5 2.286E-5 

GA 

0.1 2.5514E-8 1.6556E-8 1.9789E-8 
0.2 6.0699E-8 3.4416E-8 4.1136E-8 

0.3 1.0944E-7 5.3298E-8 6.3703E-8 

0.4 1.6736E-7 7.2970E-8 8.7216E-8 
0.5 2.2994E-7 9.3323E-8 1.1154E-8 

FDM 

0.1 1.4932E-2 7.4600E-3 8.9164E-3 
0.2 3.0645E-2 1.5362E-2 1.8361E-2 

0.3 4.8201E-2 2.4098E-2 2.8803E-2 

0.4 6.7360E-2 3.3758E-2 4.0348E-2 
0.5 8.8381E-2 4.4442E-2 5.3118E-2 

 

Example 3: Consider mKdV equation [5]  

 

0,=6 2

xxxxt uuuu                  (18) 

with initial condition  

 )(sec=,0)( xhxu  

and exact solution given by  

),(sec=),( txhtxu                 (19) 

 

In this example we have compared results with modified variational iteration method [31] 

and RBFs. The pointwise results are presented in Table 3 which demonstrates that at each 

point both MQ and GA produce better results. The Figure 5 shows graphical results of 

approximate solution of RBFs and VIM with exact solution and proved that RBFs are 

better. Figure 7 displayed pointwise absolute error of RBFs and VIM graphically, in which 

VIM shows varying error after nodal point 0.3 and at the point 0.8 the error shoot 

extensively. 
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Figure 5: Approximate solution of RBFs and 

VIM of example 3 

 

 
 
Figure 6: 3D graph of approximate solution 

of RBFs of example 3 

 
 

 

 
Figure 7: Comparative result of absolute error of RBFs and VIM of example 3 
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Table 3: Comparison of the absolute error of RBFs with VIM corresponding to example 3 
 

x-t MQ GA VIM 

00  0 0 0 

0.10.1  2.736E-4 1.649E-5 1.512E-3 

0.20.2  4.879E-3 3.278E-5 9.902E-3 

0.30.3  1.333E-2 4.815E-5 3.152E-2 

0.40.4  2.342E-2 5.469E-5 2.818E-1 

0.50.5  2.717E-2 1.767E-4 8.197E-1 

0.60.6  2.363E-2 3.832E-4 1.3742 

0.70.7  1.394E-2 1.311E-3 1.3184 

0.80.8  3.273E-3 1.595E-3 6.357E-2 

0.90.9  1.172E-4 1.638E-3 2.3936 

1.01.0  1.110E-16 1.110E-16 5.1783 

 

Convergence Analysis 
 

The pointwise rate of convergence in space is computed by using the following 

formula  

)/(

)/(

110

110





ii

hihi

hhlog

UuUulog
 [32] 

 

In this formula u  is the exact solution and hiU  is the numerical solution with 

space step size ih . For the computation of rate of convergence in space for each MQ, IMQ 

and GA, the space step size h  over the domain [0.1,0.5]  was kept fixed as 0.1=h  

while keeping the value of shape parameter constant at different collocation points N . 
 

Table 4: 𝑳∞ error norms and space rate of convergence at time t=0.1 of example 1 
 

 

𝑵𝒕𝒊𝒎𝒆𝒔 𝑳∞ order 𝑳∞ order 𝑳∞ order 

  MQ  IMQ  GA 

1000 2.2311E-5   3.4265E-5   2.4163E-6   
2000 1.8648E-5  0.25  2.5135E-5  0.44  6.6369E-8  5.18 
4000 1.8110E-5  0.04  2.3320E-5  0.10  3.2585E-8  1.02 
8000 1.7863E-5  0.01  2.2562E-5  0.04  1.5693E-8  1.05 
16000 1.7744E-5  0.009  2.2215E-5  0.02  7.2465E-9  -0.48 

 

  



PJCIS (2016), Vol. 1, No. 1 : 25-39                     Numerical Solution of Initial 

 

37 

Table 5: 𝑳∞ error norms and space rate of convergence at time t = 0.1 of example 2 
 

 

𝑵𝒕𝒊𝒎𝒆𝒔 𝑳∞ order 𝑳∞ order 𝑳∞ order 

  MQ  IMQ  GA 

100 5.4013E-6   3.2521E-6   2.5514E-8   
200 9.3815E-7  2.52  1.3529E-6  1.26  3.6123E-7  -3.82 
400 9.3811E-7  6.15  1.3333E-6  0.02  3.1026E-7  0.21 
800 9.3809E-7  3.07  1.3273E-6  6.50  2.8619E-7  0.11 
1600 9.3808E-7  0.000  1.3249E-6  2.61  2.8035E-7  0.02 

 
In the Table 4 various collocation point N  are used and the time step size 

0.0001=t  had been kept constant. The result shows that rate of convergence in RBFs 

increases along with the improvement of accuracy L  due to increase of collocation 

points N . In the Table 5 it is observed that the situation was same as it was noticed in 

Table 4, with fixed time step 0.001=t , but in the case of GA the accuracy reduced with 

the higher collocation points. 

 

CONCLUSION 
 

 The different values obtained by the shape parameter which were selected 

randomly by proposed method gave the most accurate results. Significant differences are 

observed in the accuracy among RBFs at different shape parameters. It is also observed 

that the number of nodes and accuracy are inversely proportional to each other. The 

proposed method shows better numerical results for solving IBVPs. All the results indicate 

that Gaussian (GA) has the best accuracy as compared to MQ and IMQ of RBFs. The 

numerical results confirm that RBFMOL  method has better accuracy over the two 

numerical methods i.e FDM and VIM. The efficient results of numerical solution of 

nonlinear PDEs are obtained due to its two major advantages i.e the meshless property and 

use of the best ODE solver. 
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