dc.contributor.author |
Zaidi, Syed Shan-e-Ali |
|
dc.date.accessioned |
2018-04-05T06:27:28Z |
|
dc.date.accessioned |
2020-04-15T00:39:28Z |
|
dc.date.available |
2020-04-15T00:39:28Z |
|
dc.date.issued |
2017 |
|
dc.identifier.uri |
http://142.54.178.187:9060/xmlui/handle/123456789/10745 |
|
dc.description.abstract |
Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production on the Indian subcontinent, and is caused by monopartite begomoviruses accompanied by a specific DNA satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Since the breakdown of resistance against CLCuD in 2001/2002, only one virus, the “Burewala” strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bur), and a recombinant form of CLCuMB have consistently been identified in cotton across the major cotton growing areas of Pakistan. Unusually a bipartite isolate of the begomovirus Tomato leaf curl virus was identified in CLCuD-affected cotton recently. In the study described here we isolated the bipartite begomovirus Tomato leaf curl New Delhi virus (ToLCNDV) from CLCuD-affected cotton. To assess the frequency and geographic occurrence of ToLCNDV in cotton, CLCuD-symptomatic cotton plants were collected from across the Punjab and Sindh provinces between 2013 and 2015. Analysis of the plants by diagnostic PCR showed the presence of CLCuKoV-Bur in all 31 plants examined and ToLCNDV in 20 of the samples. Additionally, a quantitative real-time PCR analysis of the levels of the two viruses in co-infected plants suggests that coinfection of ToLCNDV with the CLCuKoV-Bur/CLCuMB complex leads to an increase in the levels of CLCuMB, which encodes the major pathogenicity (symptom) determinant of the complex. A recently developed genome engineering platform, clustered regularly interspaced short palindromic repeat / CRISPR associated9 (CRISPR/Cas9) system, was evaluated to engineer broad-spectrum begomovirus resistance. The results indicated that CRISPR/Cas system can be efficiently used to target CLCuKoV and also to engineer broad-spectrum resistance. Plants expressing AZP-G5-GroEL were also evaluated for the confirmation of transgenes. The significance of these results are discussed. |
en_US |
dc.description.sponsorship |
Higher Education Commission, Pakistan |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Pakistan Institute of Engineering and Applied Sciences Nilore, Islamabad, Pakistan |
en_US |
dc.subject |
Natural Sciences |
en_US |
dc.title |
Characterization of Bipartite Begomoviruses from Cotton and Evaluation of Transgenic Plants for Broad-Spectrum Resistance against Begomoviruses |
en_US |
dc.type |
Thesis |
en_US |