dc.contributor.author |
Aslam, Adnan |
|
dc.date.accessioned |
2017-11-27T10:36:50Z |
|
dc.date.accessioned |
2020-04-15T04:28:43Z |
|
dc.date.available |
2020-04-15T04:28:43Z |
|
dc.date.issued |
2012 |
|
dc.identifier.uri |
http://142.54.178.187:9060/xmlui/handle/123456789/11810 |
|
dc.description.abstract |
In this thesis we classify all unmixed monomial ideals I of codimension 2 which
are generically a complete intersection and which have the property that the sym-
bolic power algebra A(I) is standard graded. We give a lower bound for the highest
degree of a generator of A(I) in the case that I is a modification of the vertex cover
ideal of a bipartite graph, and show that this highest degree can be any given num-
ber. We furthermore give an upper bound for the highest degree of a generator of
the integral closure of A(I) in the case that I is a monomial ideal which is generically
a complete intersection.
Minh and Trung presented criteria for the Cohen-Macaulayness of a monomial
ideal in terms of its primary decomposition. We extend their criteria to characterize
√
the unmixed monomial ideals for which the equality depth(S/I) = depth(S/ I)
holds. As an application we characterize all the pure simplicial complexes ∆ which
have rigid depth, that is, which satisfy the condition that for every unmixed mono-
√
mial ideal I ⊂ S with I = I ∆ one has depth(I) = depth(I ∆ ).
It is shown that a squarefree principal Borel ideal satisfies the persistence prop-
erty for the associated prime ideals. For the graded maximal ideal we compute the
index of stability with respect to squarefree principal Borel ideals and determine
their stable set of associated prime ideals. |
en_US |
dc.description.sponsorship |
Higher Education Commission, Pakistan |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
GC University Lahore, Pakistan |
en_US |
dc.subject |
Natural Sciences |
en_US |
dc.title |
Homological and Combinatorial Properties of Monomial Ideals and Their Powers |
en_US |
dc.type |
Thesis |
en_US |