PASTIC Dspace Repository

Alleviation of sepsis-associated encephalopathy by ginsenoside via inhibition of oxidative stress and cell apoptosis: An experimental study

Show simple item record

dc.contributor.author Mei, Xiping
dc.contributor.author Feng, Huibin
dc.contributor.author Shao, Bibo
dc.date.accessioned 2022-10-19T05:23:52Z
dc.date.available 2022-10-19T05:23:52Z
dc.date.issued 2020-11-14
dc.identifier.citation Mei, X., Feng, H., & Shao, B. (2020). Alleviation of sepsis-associated encephalopathy by ginsenoside via inhibition of oxidative stress and cell apoptosis: An experimental study. Pakistan Journal of Pharmaceutical Sciences, 33(6). en_US
dc.identifier.issn 1011-601X
dc.identifier.uri http://142.54.178.187:9060/xmlui/handle/123456789/13240
dc.description.abstract Ginsenoside (Rg1) has biological effects including anti-oxidation, anti-inflammation, neuroprotection and neural function improvement, but with few studies in sepsis-associated encephalopathy (SAE). This study thus evaluated Ginsenoside in alleviating SAE, suppressing oxidative stress (OS) or neuronal apoptosis. SAE mouse model was generated and were assigned into SAE, SAE + LD-Rg1, and SAE + HD-Rg1 groups to measure neural apoptosis by flow cytometry. Contents of malondialdehyde (MDA), superoxide dismutase (SOD), GSH-Px and caspase-3 were quantified, and mouse neural reflex function was evaluated. Expression of Nrf2, HO-1 was measured. Mouse neuron MN-c and microglia BV2 were co-cultured in control, LPS, LPS+Rg1 (20μM) and LPS+Rg1 (40μM) groups. Iba-1 expression of BV2 cells was measured by flow cytometry. Contents of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were quantified. Apoptosis of MN-c cells was measured by flow cytometry, and reactive oxygen species (ROS) content was measured by DCFH-DA staining. SAE mice had elevated caspase-3 activity, cell apoptosis, MDA content, and decreased SOD, GSH-Px activity or neural reflex score comparing to Sham group. Rg1 treatment suppressed caspase-3 activity, apoptotic rate or MDA content, recovered SOD activity, neural reflex score, and expression of Nrf2 and HO-1. LPS treatment elevated Iba-1 expression and release of inflammatory cytokines TNF-α, IL-1β and IL-6, induced MN-c apoptosis or ROS production, and enhanced Nrf2 and HO-1 expression. Rg1 treatment remarkably inhibited LPS-induced response or cell apoptosis. Ginsenoside can alleviate SAE damage via up-regulating Nrf2 and HO-1 to enhance anti-OS potency and to reduce neural cell apoptosis. en_US
dc.language.iso en en_US
dc.publisher Karachi:Pakistan Journal of Pharmaceutical Sciences, university of Karachi. en_US
dc.subject Sepsis-associated encephalopathy (SAE) en_US
dc.subject ginsenoside, Nrf2 en_US
dc.subject oxidative stress en_US
dc.subject cell apoptosis en_US
dc.title Alleviation of sepsis-associated encephalopathy by ginsenoside via inhibition of oxidative stress and cell apoptosis: An experimental study en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account