Abstract:
The traditional Harris detector are sensitive to noise and resolution because without the property of scale invariant. In this research, The Harris corner detector algorithm is improved, to work with multi resolution images, the technique has also been working with poor lighting condition by using histogram equalization technique. The work we have done addresses the issue of robustly detection of feature points, detected multiple of local features are characterized by the intensity changes in both horizontal and vertical direction which is called corner features. The goal of this work is to detect the corner of an object through the Harris corner detector with multiple scale of the same image. The scale invariant property applied to the Harris algorithm for improving the corner detection performance in different resolution of the same image with the same interest point. The detected points represented by two independent variables (x, y) in a matrix (x, y) and the dependent variable f are called intensity of interest points. Through these independent variable, we get the displacement and velocity of object by subtracting independent variable f(x,y) at current frame from the previous location f ̀((x,) ̀(y,) ̀) of another frame. For further work, multiple of moving object environment have been taken consideration for developing algorithms.