Abstract:
Saffron has been applied in depression treatment, but its antidepressant compounds and mechanisms are unclear. In this research, a network pharmacology-based method was proposed to screen the active compounds and the potential mechanisms of saffron for depression treatment. Firstly, the chemical compounds of saffron were collected from literature and filtered by drug-like prediction. Secondly, common targets, by comparing the targets of saffron predicted by Pharm Mapper server with targets associated with depression collected from Genecards, were regarded as the antidepressant targets of saffron. Thirdly, common targets were mapped to KEGG pathways, considered as the pathways related with the antidepressant effects of saffron. Finally, the network of compounds-targets-pathways was constructed and analyzed by cytoscape 3.4.0. Ten compounds including crocetin, picrocrocin, (1R, 5S, 6R)-5(hydroxymethyl)- 4, 4, 6-trimethyl-7-Oxabicyclo[4.1.0]heptan-2-one and its glycoside were screened as the main antidepressant compounds, some of which were reported for the first time. They might have effective treatment for depression by acting on targets, such as MAP2K1, MAPK1, HRAS, PIK3R1, ALB and AKT1 and pathways related with immune system, signal transduction and so on. This study provided a new insight into the antidepressant mechanism and active compounds of saffron, which also had a guiding effect on later experiments.