Abstract:
Eight pigmented genotypes of indica subspecies were geminated and then treated by mannitol-induced water deficit stress. A change of growth characteristics, photosynthetic pigments, lipid peroxidation, DNA content, proline content and anthocyanin ccumulation in stressed seedling (100 mM mannitol) and control plant (0 mM mannitol) were alculated.Growth performances, photosynthetic pigment concentrations, and DNA contents in all rice genotypes were dropped whereas proline, anthocyanin contents and the lipid peroxidation levels were enriched. The stabilization in total photosynthetic pigment concentrations of stressed-seedlings were positively correlated to the proline or anthocyanin accumulation. In contrast, MDA content, the increases in the percentages of drought-stressed seedlings were negatively correlated to the proline or anthocyanin accumulation. The changes in biochemical, physiological and growth parameters were subjected to Ward’s cluster analysis for water deficit tolerance. These cultivars could be classified into two groups, water deficit sensitive, SY, KD, KLD and TD49 and water deficit tolerance, KS, KK1, KK2 and BSR.