Abstract:
Canopy light distribution and photosynthesis modeling is fundamental to cereal crop cultivation, breeding and crop informatics. It also has a great theoretical and practical significance for the evaluation and optimization of plant types and computer simulations of crop growth. This study has developed a cereal crop canopy photosynthesis model based on the improved “stratified-clipping method", which combines morphology, physiology and optics. This model includes a canopy shape model, a single leaf photosynthesis rate model, a canopy light distribution model and a photosynthetic rate model. In this study we carried out a numerical simulation of the photosynthetic rates of the 15625 rice plant types. The numerical results showed that the photosynthesis rate was closely related to the following five factors: leaf density, leaf nitrogen content, leaf
length, leaf width and leaf angle. The model led us to the conclusion that the ideal rice plant type has large values around the vectors for the five factors in the upper part of the canopy, but should decreases downwardly along the canopy