Abstract:
Lovastatin (LSN), a potent anti-hyperlipidemic drug, possesses poor bioavailability due to its very low
aqueous solubility. The objective of this study was to establish a relationship between increased drug solubility before reaching site of absorption or increasing drug solubility at target absorption site for accentuated bioavailability of LSN. Composites of LSN with oppositely natured pH-sensitive acrylate polymers, cationic Eudragit EPO (EPO) and anionic Eudragit L100 (L100), were fabricated with physical trituration and kneading methods. Formulations were characterized for solubility, FTIR, PXRD, DSC, SEM, dissolution and bioavailability studies in rats. Interestingly, we observed that physical mixtures of EPO outmatched its kneaded formulations, whereas the physical mixtures and kneaded dispersions of L100 were virtually similar in characteristics. EPO was superior in boosting LSN solubility in the respective medium than the L100. Moreover, EPO produced immediate release profile in gastric environment whereas L100 offered sustained release of LSN in intestinal milieu. Bioavailability studies in rats further supported the EPO formulation in
terms of shorter Tmax, higher Cmax and heightened AUC.