PASTIC Dspace Repository

FACTOR ANALYSIS OF TILLAGE EFFECTS ON SOIL PROPERTIES OF GRANTSBURG SOILS IN SOUTHERN ILLINOIS UNDER CORN AND SOYBEAN

Show simple item record

dc.contributor.author IMTIAZ HUSSAIN
dc.contributor.author K.R. OLSON
dc.date.accessioned 2022-12-21T04:10:48Z
dc.date.available 2022-12-21T04:10:48Z
dc.date.issued 2012-04-20
dc.identifier.citation Hussain, I., & Olson, K. R. (2012). Factor analysis of tillage effects on soil properties of Grantsburg soils in southern Illinois under corn and soybean. Pakistan Journal of Botany, 44(2), 795-800. en_US
dc.identifier.issn 2070-3368
dc.identifier.uri http://142.54.178.187:9060/xmlui/handle/123456789/15399
dc.description.abstract Adoption of conservation tillage resulted in changes in soil properties, soil organic matter, soil nutrients. These soil variables were strongly correlated and could not be explained independently by the univariate analysis. The objectives of the study were to use the factor analysis for the identification of the factor pattern in soil properties and to examine the changes in factor scores in no-till (NT), chisel plow (CP) and moldboard plow (MP) tillage systems at different depths after 8 years of the tillage application and planting of corn and soybean on a sloping and previously eroded with a root restricting fragipan Grantsburg soil. The soil samples from the 0 to -5 and -5 to -15 cm soil depths were analyzed for the Ca, Mg, K, P, aggregate stability, particulate organic C, N and humified organic C and N. With factor analysis, 13 highly correlated soil variables were grouped into three different uncorrelated factors, which accounted for the 78% total variance of the data. The soil organic factor had high variable loading on aggregate stability, soil organic C and N contents in soil, POM and humified organic fractions. This factor varied between tillage and represented the accumulation of soil organic matter and its effect on aggregation because of the adoption of tillage. The soil exchange factor had high variable loading for the extractable Ca, Mg and CEC, and varied with tillage and depth because of mixing due to plowing and stratification due to use of no-till treatment. The soil nutrient factor had high variable loading on soil K and P and soil pH and varied between tillage treatments. The nutrient factor scores were also affected by fertilizer application and its mixing by plowing in CP and MP. No-till, which lacks mixing, resulted in decrease in availability of nutrients. This technique enables us to combine the correlated soil variables into three different groups and assess the impact of soil management systems, soil depths and sampling years on these factors. In the NT, lack of tillage, resulted in stratification of exchangeable bases, reduced availability of nutrients. However, it contributed to the maintenance of soil organic matter and soil aggregation. The mixing of soil with plowing resulted in the uniform nutrient availability and exchange capacity of soil in plow layer with the CP and MP systems. The plowing affected soil aggregation adversely due to decomposition of soil organic matter and making soil more susceptible to erosion. The crop yield of maize and soybean were higher with NT system than with CP and MP systems en_US
dc.language.iso en en_US
dc.publisher Karachi: Pakistan Botanical Society, University of Karachi en_US
dc.title FACTOR ANALYSIS OF TILLAGE EFFECTS ON SOIL PROPERTIES OF GRANTSBURG SOILS IN SOUTHERN ILLINOIS UNDER CORN AND SOYBEAN en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account