Abstract:
Assessment and knowledge of the genetic diversity and variation within and between populations of rare and
endangered plants is very important for effective conservation. Intergenic spacer sequences variation of psbA-trnH locus of chloroplast genome was assessed within Breonadia salicina (Rubiaceae), a critically endangered and endemic plant species to South western part of Kingdom of Saudi Arabia. The obtained sequence data from 19 individuals in three populations revealed nine haplotypes. The aligned sequences obtained from the overall Saudi accessions extended to 355 bp, revealing nine haplotypes. A high level of haplotype diversity (Hd = 0.842) and low level of nucleotide diversity (Pi = 0.0058) were detected. Consistently, both hierarchical analysis of molecular variance (AMOVA) and constructed neighbor-joining tree
indicated null genetic differentiation among populations. This level of differentiation between populations or between regions in psbA-trnH sequences may be due to effects of the abundance of ancestral haplotype sharing and the presence of private haplotypes fixed for each population. Furthermore, the results revealed almost the same level of genetic diversity in comparison with Yemeni accessions, in which Saudi accessions were sharing three haplotypes from the four haplotypes found in Yemeni accessions.