Abstract:
Owing to high charge carrier mobility, impressive absorption capacity and fast responsivity, graphene can be utilized for various light sensing applications. Under ultra violet illumination the photoconductivity response of chemical vapor deposition grown graphene based field effect transistor is studied at different drain-source and backgate voltages as a function of time. Increase in photocurrent characteristics is observed at maximum drain-source voltage of 1 V. The response of photosensitivity is tuned by varying the backgate voltage. Raman spectrum ratifies high purity of graphene. Furthermore, the performance of graphene based phototransistor is studied by analyzing responsivity, detectivity.