Abstract:
Alumina and Silicon Carbide armor plates have been tested numerically against 7.62x51 (mm x mm) armor piercing (AP) projectiles. A 2- D problem with axial symmetry has been designedand the simulations were carried out using commercial software ANSYS AUTODYN. Experiments were modeled for Alumina (99.5%), Alumina (99.7%) and SiC with a range of tile thicknesses (5, 10, 15 and 20 mm). The projectile was chosen as 7.62 x 51AP bullet (initial velocity 810 m/sec)with two different core materials Steel 4340 and WC, however, casing material was copper for both cores. SiC showed better defense against AP bullet as compared to Al2O3. The residual velocity and momentum of the bullet were found to decrease with increasing tile thickness. SiC tiles with thickness 15mm and 20 mm successfully sustained penetration against steel 4340 and WC core bullets, respectively. However none of the Alumina targets succeeded in stopping the bullet.