PASTIC Dspace Repository

Catalytic and biological screening of newly synthesized organotin(IV) carboxylates

Show simple item record

dc.contributor.author Tariq, Muhammad
dc.date.accessioned 2017-12-14T08:50:06Z
dc.date.accessioned 2020-04-14T19:25:08Z
dc.date.available 2020-04-14T19:25:08Z
dc.date.issued 2013
dc.identifier.uri http://142.54.178.187:9060/xmlui/handle/123456789/7536
dc.description.abstract Di- and tri-organotin(IV) carboxylates (1-47) of the type R2SnL2 [R = CH3, n-C4H9, n-C8H17] and R3SnL [R = CH3, n-C4H9, C6H5, where L= 3-(4-fluorophenyl)-2-methylacrylic acid (HL1), 2-(4-ethylbenzylidene) butanoic acid (HL2), 2-(4-ethoxybenzylidene) butanoic acid (HL3), 3-(4- cyanophenyl)-2-methylacrylic acid (HL4), 3-(4-ethoxyphenyl)-2-methylacrylic acid (HL5), 3-(2- fluorophenyl) 2-methylacrylic acid (HL6), 3-(4-fluorophenyl) acrylic acid (HL7), 3-(4- cyanophenyl) acrylic acid (HL8) have been synthesized and characterized by various analytical techniques such as elemental analysis, FT-IR, NMR (1H, 13C) and single crystal X-ray analysis. The results showed that the ligands coordinate with Sn atom via carboxylate moiety (COO−) with bidentate mode of binding. The diorganotin(IV) dicarboxylates exhibited distorted octahedral or skew trapezoidal geometry in solid state while the coordination number around tin changed from six to five in solution state. The triorganotin(IV) carboxylates exhibited polymeric trigonal bipyramidal geometry in solid state while monomeric tetrahedral geometry in solution state. The catalytic activity of the synthesized complexes was assessed in the production of biodiesel. Biodiesel is the monoalkyl ester of long chain fatty acids derived from the renewable feed stock, such as vegetable oil and is produced by a transesterification of vegetable oil with methanol. The results revealed that triorganotin(IV) complexes exhibited comparatively higher catalytic activity than their diorganotin(IV) analogues. The synthesized complexes were also screened for their biological activities such as antibacterial, antifungal and cytotoxicity. The results showed that triorganotin(IV) complexes exhibited more bactericidal, fungicidal and cytotoxic effects than diorganotin(IV) complexes. DNA interactions studies of the ligands and synthesized complexes were investigated by UV-Vis absorption spectroscopy. The results showed that both ligands and complexes interact with DNA via intercalation as well as minor groove binding. en_US
dc.description.sponsorship Higher Education Commission, Pakistan en_US
dc.language.iso en en_US
dc.publisher Quaid-i-Azam University Islamabad, Pakistan en_US
dc.subject Natural sciences en_US
dc.title Catalytic and biological screening of newly synthesized organotin(IV) carboxylates en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account